

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ И МОНТАЖУ ТЕХНИЧЕСКИЙ ПАСПОРТ

ТЕПЛОВЕНТИЛЯТОРЫ

 СЕРИЯ СЕ
 КЭВ-2С31E
 КЭВ-2С41E
 КЭВ-4С40E

 КЭВ-3С31E
 КЭВ-3С41E
 КЭВ-6С40E

K9B-4C41E K9B-9C40E

КЭВ-2С51E КЭВ-6С41E КЭВ-12С40E

КЭВ-15С40Е КЭВ-18С40Е

Версия: RUS-E11CE Дата: 06-2023

СОДЕРЖАНИЕ

1	НАЗНАЧЕНИЕ	3
	УСЛОВИЯ ЭКСПЛУАТАЦИИ	
	ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	
	УСТРОЙСТВО И ПОРЯДОК РАБОТЫ	
	УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ	
	комплектность	
	ТРЕБОВАНИЯ К УСТАНОВКЕ И ПОДКЛЮЧЕНИЮ	
	ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	
	ТРАНСПОРТИРОВКА И ХРАНЕНИЕ	
	СВЕДЕНИЯ ОБ УТИЛИЗАЦИЯ	
	ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИУ УСТРАНЕНИЯ	

Ваши замечания и предложения присылайте по адресу 195279, Санкт- Петербург, а /я 132, шоссе Революции, д.90, лит.А

Тел. (812) 301-99-40, тел./факс (812) 327-63-82 Сервис-центр: (812) 493-35-98

1 НАЗНАЧЕНИЕ

- 1.1 Напольные тепловентиляторы КЭВ-2;3С31Е КЭВ-2С51Е, КЭВ-2;3;4;6С41Е и КЭВ-4;6;9;12;15;18С40Е, именуемые в дальнейшем «тепловентиляторы», имеют электрический источник тепла. Предназначены для рециркуляционного отопления складских и промышленных помещений.
- 1.2 Тепловентиляторы НЕ предназначены для воздушного отопления в автомойках и других помещениях, в воздухе которых присутствует капельная влага, туман.
- 1.3 Рекомендации по выбору тепловентиляторов, их тепловой мощности и расположению внутри помещения в зависимости от наружной температуры, должен давать специалист-проектант по отоплению и вентиляции. Ориентировочные рекомендации можно получить у нас на сайте www.teplomash.ru.
 - 1.4 Тепловентиляторы рассчитаны для работы, как в периодическом, так и в непрерывном режиме.

2 УСЛОВИЯ ЭКСПЛУАТАЦИИ

2.1 Температура окружающего воздуха в помещении от минус 30 до плюс 40°C

2.2 Относительная влажность при температуре +25°C не более 80%

2.3 Содержание пыли и других твёрдых примесей не более 10 мг/м³;

2.4 Не допускается присутствие в воздухе веществ, агрессивных по отношению к углеродистым сталям, алюминию и меди (кислоты, щелочи), липких либо волокнистых веществ (смолы, технические или естественные волокна), капельной влаги, тумана и пр.

3 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

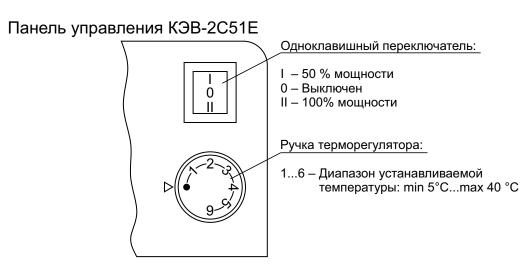
- 3.1 Технические характеристики приведены в таблице 1.
- 3.2 Класс защиты от поражения электротоком 1.
- 3.3 Степень защиты, обеспечиваемая оболочкой IP21.
- 3.4~ Срок службы не менее 5~ лет. B~ том числе, срок хранения B~ условиях 2~ группы по ГОСТ 15150~ при отсутствии B~ воздухе кислотных, щелочных и других агрессивных примесей 1~ год;
 - 3.5 Драгоценные металлы отсутствуют.
- 3.6 Тепловентиляторы КЭВ-4С40E, КЭВ-6С40E, КЭВ-9С40E, КЭВ-12С40E, КЭВ-15С40E, КЭВ-18С40E, подключаются как к пятипроводной сети 380 В 50 Γ ц (3NPE \sim 380 В 50 Γ ц), так и к сети (3PE \sim 380 В 50 Γ ц) с изолированной нейтралью. В случае подключения к пятипроводной сети 380 В 50 Γ ц (3NPE \sim 380 В 50 Γ ц) рабочий нулевой проводник не используется.

Таблица 1. Технические характеристики

							anti-opino i intri
Модель	КЭВ- 2С31Е	КЭВ- 3С31Е	КЭВ- 2С51Е	КЭВ- 2С41Е	КЭВ- 3С41Е	КЭВ- 4С41Е	КЭВ- 6С41Е
Артикул	221002	221004	221001	221003	221005	221007	221008
Параметры питающей сети			1/N	PE ~ 220 B 50) Гц	•	•
Режимы мощности ¹ , кВт	*/1/2	*/1,5/3	1/2	0,65/1,3/2	*/1,5/3	*/2,66/4	*/3/6
Расход воздуха, м ³ /час	40	00	100	170	4	70	670
Подогрев воздуха, °С режим вентилятора режим 33% тепловой мощности режим 50% тепловой мощности режим 66% тепловой мощности режим 100% тепловой мощности	0 - 7 - 15	0 - 11 - 22	- - 30 - 60	11 - 23 35	0 - 10 - 19	0 - 17 - 25	0 - 13 - 27
Диапазон регулирования температуры воздуха, °C	от плюс 5 до плюс 40						
Габаритные размеры, мм -длина -ширина -высота	328 177 194 294 270 189 220 271 420 194 307 421		71	348 347 461			
Масса, кг	4,5	4,7	2,36	4,15	5,8	6,2	9,0
Максимальный ток при номинальном напряжении, А	9,1	13,7	9,7	9,8	14,6	19,4	29,0
Потребляемая мощность двигателя, Вт	25		20	25	30		52
Частота вращения, об/мин	1300		2500		1300		
Уровень звукового давления на расстоянии 3м, дБ(A)	3	0	29	31	3	0	42

Примечание:

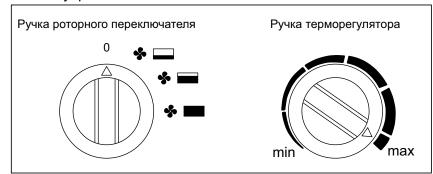
¹ при номинальном напряжении заданные параметры могут отличаться на $^{+5}_{-10}$ % от указанных.


^{*} режим вентилятора.

Модель	КЭВ-4С40Е	КЭВ-6С40Е	КЭВ-9С40Е	КЭВ-12С40Е	КЭВ-15С40Е	КЭВ-18С40Е
Артикул	221006	221009	221010	221012	221011	221013
Параметры питающей сети			3/PE ~ 38	0 В 50 Гц		
Режимы мощности ¹ , кВт	*/2/4	*/3/6	*/4,5/9	*/4/8/12	*/5/10/15	*/9/18
Расход воздуха, м ³ /час	470	6	70	12	250	1350
Подогрев воздуха, °С режим вентилятора режим 33% тепловой мощности режим 50% тепловой мощности режим 66% тепловой мощности режим 100% тепловой мощности Диапазон регулирования температуры воздуха, °С	0 - 13 - 25	0 - 13 - 27	0 - 20 - 40 от плюс 5,	0 10 - 19 29 до плюс 40	0 12 - 24 36	0 - 20 - 40
Габаритные размеры (ДхШхВ), мм	294x271x421	348x3	47x461	357x399x528		
Масса, кг	6,2	9	,0	14,4		15,5
Максимальный ток при номинальном напряжении, А	6,7	9,9	14,7	19,5	24,3	29,1
Потребляемая мощность двигателя, Вт	30	52 95				
Частота вращения, об/мин	1300					
Уровень звукового давления на расстоянии 3м, дБ(A)	30	42	44	48		
Примечание:						

Примечание:

4 УСТРОЙСТВО И ПОРЯДОК РАБОТЫ

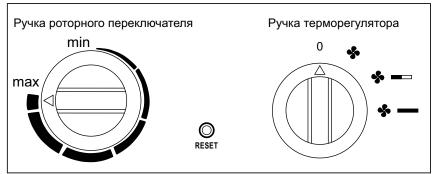

- 4.1 Тепловентилятор осуществляет рециркуляционное отопление, всасывая воздух из помещения, нагревая его ТЭНами и возвращая назад в помещение.
- 4.2 Тепловентилятор имеет прочный корпус, изготовленный из оцинкованной стали, покрытой высококачественным полимерным покрытием. Внутри корпуса установлены трубчатые электронагреватели (ТЭНы), кроме КЭВ-2С51Е, осевой вентилятор и блок управления; на лицевой стороне корпуса закреплена решетка воздуховыпускного окна. В тепловентиляторе КЭВ-2С51Е установлены керамические РТС нагреватели, особенностью которых является РТС-эффект (положительный температурный коэффициент), обеспечивающий саморегулирование потребляемой мощности нагревательного элемента в зависимости от температуры воздуха в зоне всасывания. Применение керамических РТС-нагревателей позволяет существенно снизить расход электроэнергии.
 - 4.3 На рисунке 1 даны габаритные и установочные размеры.
 - 4.4 Электрические схемы тепловентиляторов приведены на рисунках 2-11.
 - 4.5 Управление тепловентилятором
- 4.5.1 Управление тепловентилятором КЭВ-2С51Е осуществляется одноклавишным переключателем (0 выкл., І – 50 % мощности, ІІ – 100 % мощности) и вращающейся ручкой терморегулятора, которые установлены на задней панели корпуса (см. рисунок ниже). Ручкой терморегулятора устанавливается необходимая температура нагрева воздуха в помещении в диапазоне от плюс 5 до плюс 40 °C. При достижении установленной температуры нагреватели и вентилятор выключаются, а при температуре ниже установленной - включаются.

¹ при номинальном напряжении заданные параметры могут отличаться на $^{+5}_{-10}$ % от указанных.

4.5.2 Управление тепловентиляторами осуществляется ручками роторного переключателя и терморегулятора, установленными на корпусе тепловентилятора. Они позволяют регулировать тепловую мощность и поддерживать необходимую температуру воздуха (показаны на рисунке ниже). Ручкой терморегулятора устанавливается необходимая температура нагрева воздуха в помещении в диапазоне от плюс 5 до плюс 40 °C. При достижении установленной температуры нагреватели выключаются, вентилятор продолжает работать, а при температуре ниже установленной - нагреватели включаются.

Панель управления КЭВ-2С41Е

0 - Выключен


🦫 🔙 33% мощности и вентилятор

• 66% мощности и вентилятор

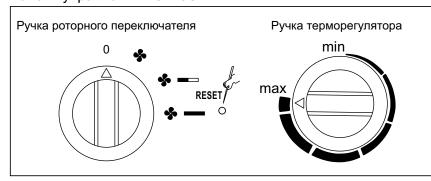
100% мощности и вентилятор

Диапазон устанавливаемой температуры: min 5 °C...max 40 °C

Панель управления КЭВ-2С31Е

0 - Выключен

режим вентилятора (без нагрева)


50% мощности и вентилятор

• 100% мощности и вентилятор

Диапазон устанавливаемой температуры: min 5 °C...max 40 °C

RESET - кнопка возобновления работы, в случае срабатывания аварийного термовыключателя

Панель управления КЭВ-3С41Е

0 - Выключен

режим вентилятора (без нагрева)

50% мощности и вентилятор

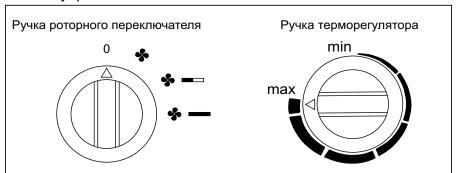
— 100% мощности и вентилятор

Диапазон устанавливаемой температуры: min 5 °C...max 40 °C

RESET - кнопка возобновления работы, в случае срабатывания аварийного термовыключателя

Панель управления КЭВ-3С31Е

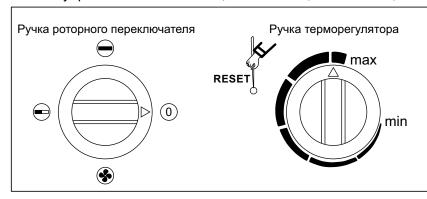
0 - Выключен


режим вентилятора (без нагрева)

♣ ■ 50% мощности и вентилятор

100% мощности и вентилятор

Диапазон устанавливаемой температуры: min 5 °C...max 40 °C


Панель управления КЭВ-4С41Е

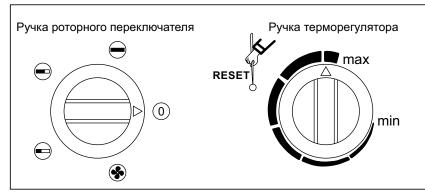
- 0 Выключен
- 🗣 режим вентилятора (без нагрева)
- 50% мощности и вентилятор
- 100% мощности и вентилятор

Диапазон устанавливаемой температуры: min 5 °C...max 40 °C

Панель управления КЭВ-6С41Е; КЭВ-4С40Е; КЭВ-6С40Е; КЭВ-9С40Е; КЭВ-18С40Е

0 Выключен

😵 Режим вентилятора (без нагрева)


50% мощности и вентилятор

100% мощности и вентилятор

Диапазон устанавливаемой температуры: min 5 °C...max 40 °C

RESET - кнопка возобновления работы, в случае срабатывания аварийного термовыключателя

Панель управления КЭВ-12С40Е; КЭВ-15С40Е

- 0 Выключен
- Режим вентилятора (без нагрева)
- 33% мощности и вентилятор
- € 66% мощности и вентилятор
- 100% мощности и вентилятор

Диапазон устанавливаемой температуры: min 5 °C...max 40 °C

RESET - кнопка возобновления работы, в случае срабатывания аварийного термовыключателя

- 4.6 Устройство аварийного отключения ТЭНов
- 4.6.1 Тепловентиляторы снабжены устройством аварийного отключения ТЭНов в случае перегрева корпуса. Перегрев может наступить от следующих причин:
- входное и выходное окна тепловентилятора загромождены посторонними предметами или подвержены сильному загрязнению;
 - вышел из строя вентилятор;
- тепловая мощность тепловентилятора сильно превышает теплопотери помещения, в котором она работает (например, при работе в помещении небольшого объема). В этом случае не рекомендуется устанавливать терморегулятор на высокие значения температуры.
- 4.6.2 При перегреве корпуса тепловентилятора срабатывает аварийный термовыключатель, который отключает устройство (или только нагреватели в зависимости от модели). Для возвращения тепловентилятора в работоспособное состояние необходимо:
 - отключить тепловентилятор от питающей сети;
 - дождаться пока он остынет;
 - выяснить причины, вызывающие срабатывание аварийного термовыключателя и устранить их;
- на передней панели (см. рисунки выше) нажмите кнопку тонкой палочкой или ручкой, возвращающую аварийный термовыключатель в рабочее состояние (кроме КЭВ-2С41E, КЭВ-3С31E, КЭВ-4С41E, КЭВ-2С51E).
- 4.6.3 Тепловентиляторы КЭВ-2С41Е, КЭВ-3С31Е, КЭВ-4С41Е КЭВ-2С51Е, снабжены аварийным термовыключателем, который после остывания корпуса, самостоятельно возвращает работоспособность тепловентилятора. Следует помнить, что аварийное отключение требует выяснения и устранения причины, вызвавшей срабатывание аварийного термовыключателя.

- 4.7 Автоматическая задержка выключения вентилятора
- 4.7.1 В тепловентиляторах (кроме КЭВ-2С51Е и КЭВ-2С41Е) предусмотрена автоматическая задержка выключения вентилятора. После выключения изделия на панели управления, вентилятор продолжит работу до тех пор, пока температура ТЭНов не снизится до заданной величины (обычно в течение 1-2 мин.) В зависимости от установки и условий эксплуатации, продувочный режим вентилятора может не включаться или включаться не сразу после выключения изделия, а через несколько минут. При выключении иным способом (снятие напряжения в сети и т.д.) продувочный режим вентилятора не включится, поэтому возможно срабатывание защиты от перегрева остаточным теплом ТЭНов. Тогда при повторном включении тепловентилятора будет работать только вентилятор. Для восстановления работы нагревательных элементов см. п.4.6
- 4.7.2 Заводом-изготовителем могут быть внесены конструктивные изменения в изделие, не ухудшающие качество и надежность, которые не отражены в настоящем паспорте.

5 УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

- 5.1 При эксплуатации электроприборов с целью снижения риска возгорания, поражения током и травм всегда должны соблюдаться следующие базовые меры предосторожности:
- 5.2 Работы по установке, обслуживанию и подключению должны проводиться квалифицированным специалистом (-ами) в соответствии с установленными нормами и стандартами «Правил технической эксплуатации электроустановок потребителей» (утверждены приказом Минэнерго от 13.01.2003 г.) и «Правил по охране труда при эксплуатации электроустановок» (утверждены приказом Министерства труда и социальной защиты РФ от 24.07.2013 г. № 328н).
- 5.3 Запрещается эксплуатация тепловентиляторов без заземления. Использовать нулевой провод в качестве заземления запрещается. Болт заземления находится внутри корпуса и соединен на заводе-изготовителе проводом с соответствующей клеммой входной клеммной колодки.
- 5.4 Запрещается эксплуатировать изделие в отсутствии персонала, в частности, в автоматизированных или иных помещениях (шахты, тоннели, и т.д.).
- 5.5 Внутри тепловентиляторов установлен нагревательный элемент. Во время эксплуатации корпус изделия может нагреваться. Во избежании ожогов рекомендуется с осторожностью приближаться к работающему изделию.
- 5.6 В случае неисправности отключите изделие от питания, и прежде, чем снова его эксплуатировать, убедитесь в том, что квалифицированным специалистом были проведены его полная диагностика и обслуживание/ремонт.
- 5.7 Данный тепловентилятор предназначена для использования только в помещении. Не подвергайте изделие воздействию волы или высокой влажности.
 - 5.8 Отключите изделие от питания перед чисткой и техническим обслуживанием.
- 5.9 После выключения тепловентилятора ручкой роторного переключателя, тепловентилятор остается в «режиме ожидания». Для полного отключения необходимо обесточить тепловентилятор на силовом щите потребителя.
- 5.10 Не вставляйте и не допускайте попадания инородных предметов в воздухозаборное или воздуховыпускное окна тепловентилятора, так как это может привести к поражению электрическим током, возгоранию или повреждению изделия.
- 5.11 Не допускается класть на тепловентилятор любые предметы, а также закрывать или блокировать воздухозаборное или воздуховыпускное окна, так как это может привести к перегреву внутренних компонентов изделия и как следствие увеличить риск возгорания.
- 5.12 В любом электроприборе или оборудовании существует риск возникновения внутренних искр. Не устанавливайте тепловентилятор вблизи находящихся в воздухе летучих веществ или легко воспламеняющихся соединений, в связи с риском возникновения пожара или взрыва.
- 5.13 Допустима эксплуатация только в соответствии с данным паспортом. Любое другое использование изделия отличное от рекомендованного производителем может стать причиной возгорания, поражения электрическим током или травм.

6 КОМПЛЕКТНОСТЬ

Наименование	Кол-во				
КЭВ-2С51E, КЭВ-2С31E, КЭВ-3С31E, КЭВ-2С41E, КЭВ-3С41E					
Тепловентилятор с подключенным шнуром питания (~1,8 м.) евровилка	1 шт				
«Руководство по эксплуатации и монтажу, технический паспорт»	1 шт				
Гарантийные обязательства	1 шт				
КЭВ-4С41Е, КЭВ-4С40Е					
Тепловентилятор с подключённым шнуром питания (~1,8 м.) промышленная кабельная вилка	1 шт				
Промышленная кабельная розетка	1 шт				
«Руководство по эксплуатации и монтажу, технический паспорт»	1 шт				
Гарантийные обязательства	1 шт				

КЭВ-6С41Е, КЭВ-6С40Е, КЭВ-9С40Е, КЭВ-12С40Е, КЭВ-15С40Е, КЭВ-18С40Е				
Тепловентилятор с жестко закрепленной на корпусе вилкой	1 шт			
Промышленная кабельная розетка	1 шт			
«Руководство по эксплуатации и монтажу, технический паспорт»	1 шт			
Гарантийные обязательства	1 шт			

7 ТРЕБОВАНИЯ К УСТАНОВКЕ И ПОДКЛЮЧЕНИЮ

- 7.1 При установке, монтаже и запуске в эксплуатацию необходимо соблюдать меры безопасности указанные в разделе 5.
- 7.2 Установка тепловентилятора
- 7.3 Тепловентилятор допускается устанавливать только в вертикальном положении на прочную плоскую поверхность. Не допускайте наличие каких-либо предметов ближе одного метра от воздуховыпускного окна, в том числе мебели или легкоплавящихся предметов, а также предметов, цвет которых может меняться при нагревании. Минимально допустимое расстояние между воздухозаборным окном тепловентилятора и стеной должно быть 300 мм.
 - 7.4 Подключение тепловентилятора к электрической сети
- 7.4.1 Подключение к электрической сети осуществляется через автоматический выключатель (приобретается отдельно) в соответствии с «Правилами эксплуатации электроустановок». Номинальный ток автоматического выключателя и сечение подводимых медных проводов следует выбирать в соответствии с таблицей 2.

Таблица 2. Номинальные токи автоматических выключателей и сечение медных проводов подводящих кабелей.

Модель	Параметры питающей сети	Номинальный ток автоматического выключателя	Кабель
КЭВ-4С41Е	220B	25A	3x4,0
КЭВ-6С41Е	220B	40A	3x6,0
КЭВ-4С40Е		8A	4x1,5
КЭВ-6С40Е	380В (допускается	16A	4X1,3
КЭВ-9С40Е	подключение	20A	4x2,5
КЭВ-12С40Е	к сети с изолированной	25A	4x4,0
КЭВ-15С40Е	нейтралью)	32A	4x4,0
КЭВ-18С40Е		40A	4x6,0

- 7.4.2 Питание тепловентиляторов КЭВ-С51E, КЭВ-С31E, КЭВ-С41E, осуществляется от однофазной сети 220В~50Гц. Питание тепловентиляторов КЭВ-С40E от трехфазной сети 380В~50Гц.
- 7.4.3 Подключение тепловентиляторов к сети должно производиться в соответствии с электрическими схемами и таблицей 2.
- 7.4.4 Подключение к сети тепловентиляторов КЭВ-2С51Е, КЭВ-2С31Е, КЭВ-3С31Е, КЭВ-2С41Е, КЭВ-3С41Е осуществляется включением вилки шнура в розетку.
- 7.4.5 Подключение к сети тепловентиляторов КЭВ-4С41Е и КЭВ-4С40Е, осуществляется через промышленную вилку, установленную на выходящем из тепловентилятора кабеле, и промышленную кабельную розетку, входящую в комплектность тепловентилятора. В цепи питания тепловентилятора обязательно должен быть установлен автоматический выключатель в соответствии с таблицей 2.
- 7.4.6 Подключение к сети тепловентиляторов КЭВ-6С41Е, КЭВ-6С40Е, КЭВ-9С40Е, КЭВ-12С40Е, КЭВ-15С40Е и КЭВ-18С40Е осуществляется через приборную вилку, жестко закрепленную на корпусе тепловентилятора, и промышленную кабельную розетку, входящую в комплектность тепловентилятора. В цепи питания тепловентилятора обязательно должен быть установлен автоматический выключатель в соответствии с таблицей 2.
- 7.4.7 Подсоединение жил кабеля не в соответствии с маркировкой кабельной розетки приведет к выходу из строя пусковых элементов тепловентилятора. Завод-изготовитель не несет ответственности за неправильно осуществленный монтаж силовых проводов в кабельной розетке.
 - 7.5 Ввод тепловентилятора в эксплуатацию
 - 7.5.1 При вводе тепловентилятора в эксплуатацию необходимо:
 - убедиться в отсутствии препятствий для всасывания воздуха;
 - проверить напряжение питания.
- 7.5.2 При первом включении изделия происходит сгорание консервирующей смазки с поверхности ТЭНов с появлением дыма и характерного запаха. Поэтому рекомендуется перед монтажом включить тепловентилятор в режим полной мощности на 20 минут в хорошо проветриваемом помещении.
- 7.5.3 Для увеличения эксплуатационного срока службы тепловентилятора с электрическим источником тепла рекомендуется перед выключением оставить тепловентилятор работать несколько минут с выключенными нагревателями для снятия остаточного тепла ТЭНов.

8 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 8.1 Ремонт и техническое обслуживание тепловентилятора должно осуществляться квалифицированным специалистом при этом необходимо соблюдать меры безопасности указанные в разделе 5.
- 8.2 Для обеспечения надежной и эффективной работы тепловентиляторов, повышения их долговечности необходим правильный и регулярный технический уход. Для контроля работы тепловентилятора необходимо ежемесячно:
 - осматривать тепловентилятор и ТЭНы (отсутствие шума и вибраций при работе вентилятора);
 - при необходимости очищать поверхности корпуса от загрязнения и пыли;
- при длительных перерывах в эксплуатации необходимо для просушки ТЭНов включать тепловентилятор на время не менее 30 минут в режиме максимальной мощности;
- проверять электрические соединения тепловентилятора для выявления ослабления, подгорания, окисления (ослабления устранить, подгорания и окисления зачистить).
- 8.3 Частое срабатывание аварийного термовыключателя не является нормальным режимом работы тепловентилятора и требует выявления причины. При повторном включении тепловентилятора, после автоматического выключения от перегрева, следует его осмотреть и убедиться, что вентилятор вращается. При появлении повышенной вибрации, запаха плавления изоляции следует прекратить эксплуатацию и отключить тепловентилятор от сети.
- 8.4 Все виды технического обслуживания проводятся по графику вне зависимости от технического состояния тепловентилятора. Уменьшать установленный объем и изменять периодичность технического обслуживания не допускается.
 - 8.5 Устанавливаются следующие виды технического обслуживания с момента ввода изделия в эксплуатацию:
 - техническое обслуживание №1 (ТО-1), через 150-170 ч;
 - техническое обслуживание №2 (ТО-2), через 600-650 ч;
 - техническое обслуживание №3 (ТО-3), через 2500-2600 ч. но не реже 1 раза в год;
 - техническое обслуживание №4 (TO-4), через 5000-5200 ч. но не реже 1 раза в 2 года.

 Π р и м е ч а н и е - количество часов реальной работы тепловентилятора.

- 8.6 При ТО-1 производятся:
- внешний осмотр с целью выявления механических повреждений;
- очистка (продувка) наружной поверхности ТЭНов (без демонтажа);
- проверка надежности заземления изделия;
- проверка состояния винтовых соединений;
- 8.7 При ТО-2 производятся:
- TO-1:
- проверка сопротивления изоляции;
- проверка тока потребления электродвигателя;
- проверка уровня вибрации и шума органолептическим методом;
- 8.8 При ТО-3 производятся:
- TO-2:
- очистка (продувка) вентилятора от загрязнений (без демонтажа);
- протяжка клемм, проверка отсутствия подгорания и окисления.
- 8.9 Предприятие потребитель должно вести учет технического обслуживания по форме, приведенной в Таблице 3. Таблица 3. Учет технического обслуживания

Дата	Количество часов работы с начала эксплуатации	Вид технического обслуживания	Замечания о техническом состоянии изделия	Должность, фамилия, подпись ответственного лица

9 ТРАНСПОРТИРОВКА И ХРАНЕНИЕ

- 9.1 Тепловентиляторы упакованы в коробки из гофрированного картона, с нанесенным на них фирменным логотипом компании, и могут транспортироваться всеми видами крытого транспорта при температуре от минус 50 до плюс 50°С и относительной влажности не более 80% (при температуре 25°С).
- 9.2 Тепловентиляторы транспортируют любым видом транспорта в соответствии с правилами, действующими на каждом виде транспорта. При транспортировании необходимо соблюдать манипуляционные знаки, указанные на упаковке и исключать возможные удары и перемещения внутри транспортного средства.
 - 9.3 Допускается транспортирование изделий в универсальных контейнерах по ГОСТ 18477 по согласованию сторон.
- 9.4 Тепловентиляторы должны храниться в упаковке изготовителя от минус 50 до плюс 50°C и относительной влажности не более 80% (при температуре 25°C).

ВНИМАНИЕ! ПОСЛЕ ТРАНСПОРТИРОВАНИЯ ИЗДЕЛИЯ ПРИ ОТРИЦАТЕЛЬНЫХ ТЕМПЕРАТУРАХ, СЛЕДУЕТ ВЫДЕРЖАТЬ ИЗДЕЛИЕ В ПОМЕЩЕНИИ, ГДЕ ПРЕДПОЛАГАЕТСЯЕГОЭКСПЛУАТАЦИЯ, БЕЗВКЛЮЧЕНИЯВ СЕТЬНЕМЕНЕЕ 2 ЧАСОВ.

10 СВЕДЕНИЯ ОБ УТИЛИЗАЦИЯ

- 10.1 В случае непригодности тепловентилятора для использования или эксплуатации после окончания установленного срока службы производится его утилизация. Использование непригодного тепловентилятора ЗАПРЕЩЕНО!
- 10.2 Утилизация тепловентилятора после окончания срока эксплуатации не требует специальных мер безопасности и не представляет опасности для жизни, здоровья людей и окружающей среды. Изношенные тепловентиляторы сдаются в пункты вторсырья.

11 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

- 11.1 В эксплуатации по различным причинам могут возникать неисправности изделия, нарушающие его нормальную работу. В таблице 4 рассмотрены наиболее характерные неисправности, возникавшие при эксплуатации данного изделия.
- 11.2 Все работы по отысканию и устранению неисправностей в электрических цепях изделия следует выполнять, соблюдая требование правил техники безопасности (раздел 5).

Разработано и изготовлено по заказу АО «НПО «Тепломаш».

Товар сертифицирован в соответствии с едиными правилами Таможенного Союза ЕАЭС.

Таблица 4. Возможные неисправности

Характер неисправности и ее внешнее проявление	Вероятная причина	Способ устранения	
	Отсутствует напряжение в сети.	Проверить напряжение по фазам.	
Тепловентилятор не включается	Неисправен переключатель	Проверить исправность переключателя	
Тепловентилятор подает ненагретый воздух	Сработал аварийный термовыключатель	см. п.4.6	
	Температура в помещении выше	Изменить положение регулятора, если	
	установленной на терморегуляторе	это необходимо.	
Не включается секция ТЭНов при включенном вентиляторе	Неисправен терморегулятор	Проверить исправность терморегулятора. Неисправный заменить.	
	Неисправен электромагнитный контактор	Заменить электромагнитный контактор	
Снизилась сила струи с уменьшением расхода воздуха	Сильное загрязнение решетки воздухозаборного окна или ее перекрытие посторонним предметом	Прочистить решетку (раздел 8)	
Тепловентилятор не отключается	Неисправен роторный переключатель	Проверить целостность роторного переключателя	
при выключении роторным переключателем	Заклинило электромагнитный контактор	Прочистить или заменить электромагнитный контактор	

Рисунок 1. Габаритные и присоединительные размеры

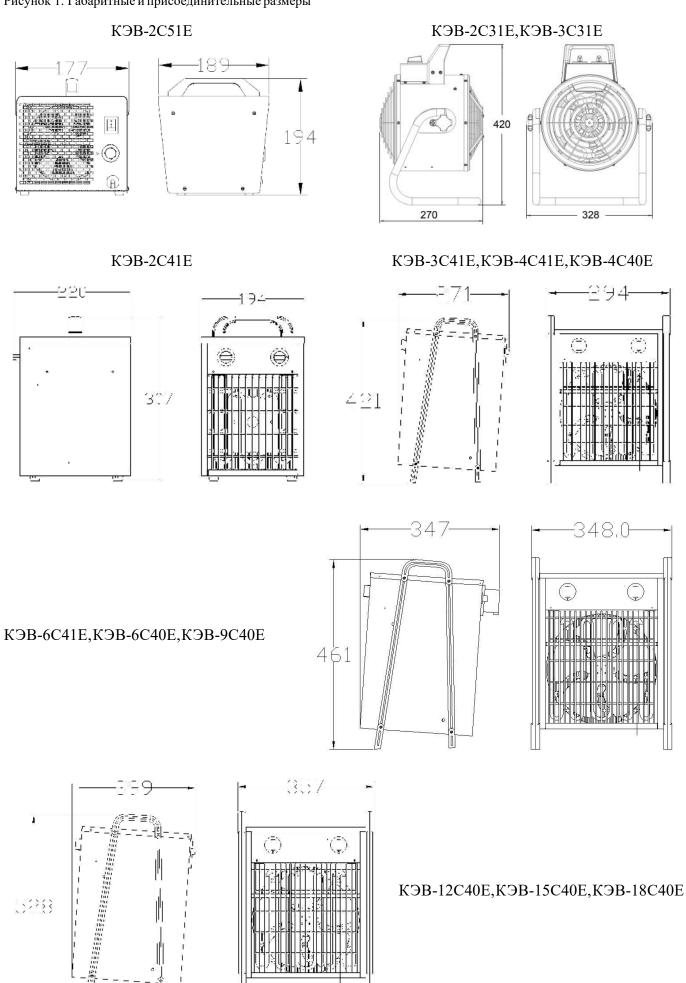
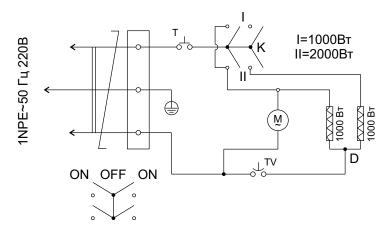
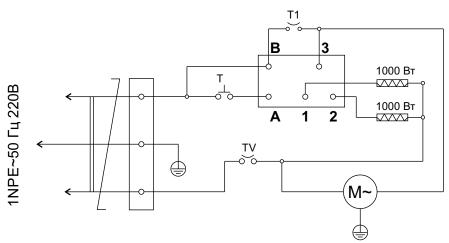



Рисунок 2. Электрическая схема тепловентилятора КЭВ-2С51Е

T- Термостат

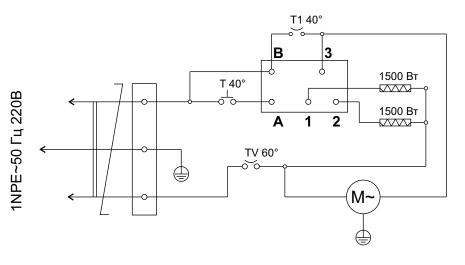

К – Выключатель

М – Электродвигатель

D – РТС-нагреватели

TV – Самовозвратный аварийный термовыключатель

Рисунок 3. Электрическая схема тепловентилятора КЭВ-2С31Е

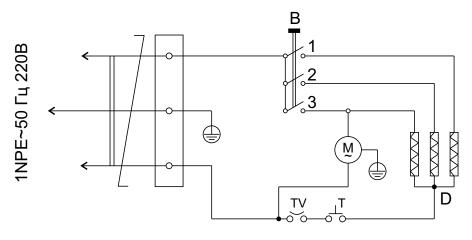

T - Термостат

TV – Управление температурой при ручном сбросе

Т1 – Термовыключатель продувки

М – Электродвигатель

Рисунок 4. Электрическая схема тепловентилятора КЭВ-3С31Е


ПЕРЕІ	ПЕРЕКЛЮЧАТЕЛЬ					
	1	2	3			
*			X			
* 		X	X			
*-	\boxtimes	\times	X			
0						

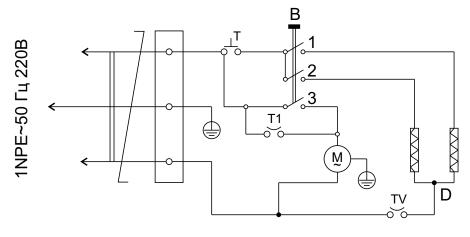
Т – Термостат

TV-Cамовозвратный аварийный термовыключатель

Т1 – Термовыключатель продувки

М – Электродвигатель

Т – Термостат


В – Выключатель

М – Электродвигатель

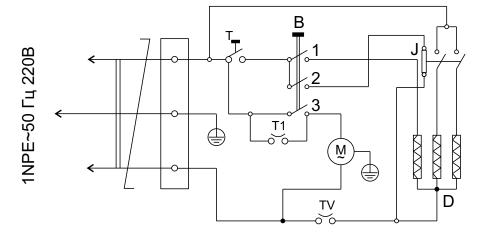
D – нагреватели (ТЭН)

TV – Самовозвратный аварийный термовыключатель

Рисунок 6. Электрическая схема тепловентилятора КЭВ-3С41Е

T - Термостат

В – Выключатель


М – Электродвигатель

D – Нагреватели (ТЭН)

TV — Управление температурой при ручном сбросе

Т1 – Термовыключатель продувки

Рисунок 7. Электрическая схема тепловентилятора КЭВ-4С41Е

ПЕРЕКЛЮЧАТЕЛЬ					
	1	2	3		
*			\boxtimes		
* 		X	\boxtimes		
* —	X	X	\boxtimes		
0					

Т – Термостат

В – Выключатель

М – Электродвигатель

D – нагреватели (ТЭН)

Ј – Реле

 ${
m TV}-{
m Camoвозвратный aварийный }$ термовыключатель

Т1 – Термовыключатель продувки

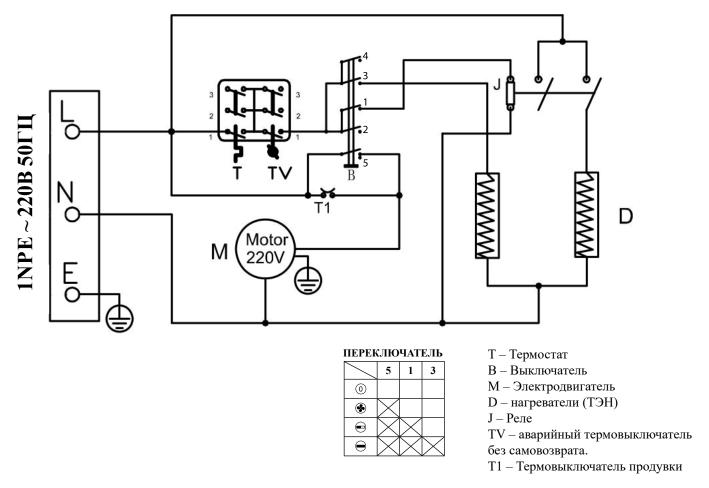
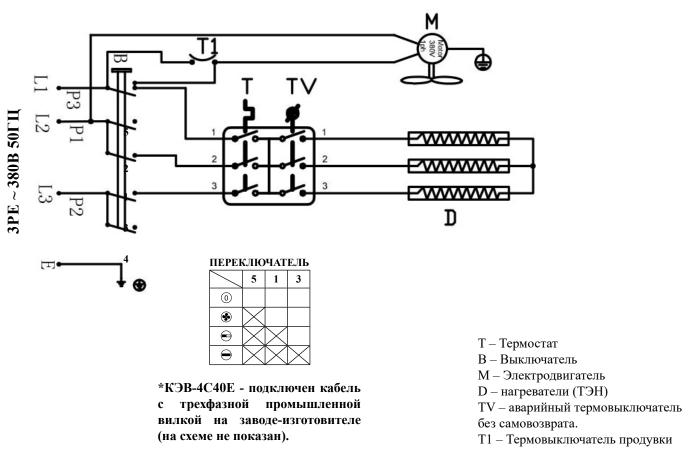



Рисунок 9. Электрическая схема тепловентиляторов КЭВ-4С40Е*, КЭВ-6С40Е и КЭВ-9С40Е

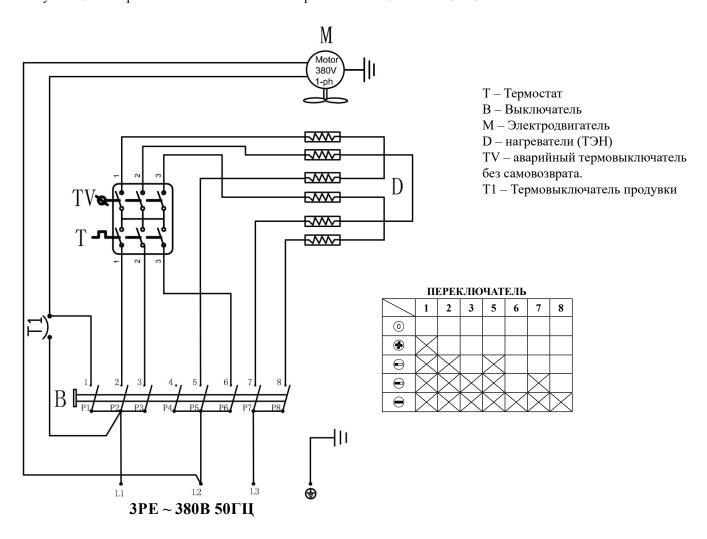
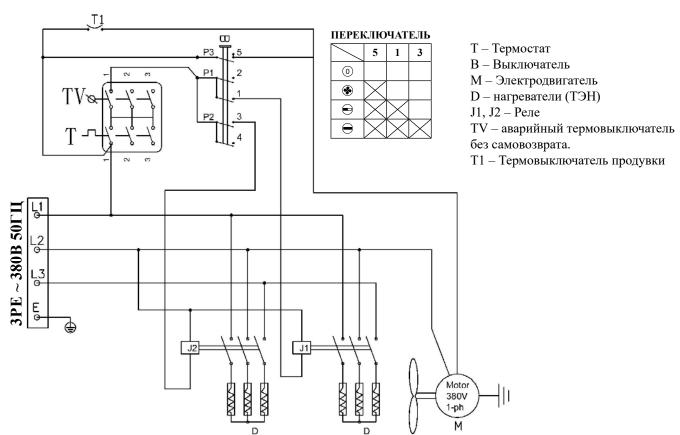



Рисунок 11. Электрическая схема тепловентилятора КЭВ-18С40Е

Импортёр: АО «НПО «Тепломаш» 195279, Санкт-Петербург, шоссе Революции, д.90, лит. А Отдел продаж: +7 (812) 301-99-40 root@teplomash.ru; www.teplomash.ru

Изготовитель: CIXI CITY HENGJIN ELECTRON CO.,LTD Адрес изготовителя: No.1 00 Haiwai avenue, Guanhaiwei

town, Cixi city, Zhejiang province, China. Страна изготовитель: КНР

QR-код

Печатное издание доступно в электронном формате PDF.